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McMillan has recently proposed that in the strong-coupling theory of superconductivity certain expecta-
tion values for the lattice eigenfrequencies play a dominant role. We point out here that the Méssbauer
effect can measure the important parameter in McMillan’s theory in-a rather direct fashion. Local-im-
purity-model calculations assuming isotopic impurities are presented, suggesting that McMillan’s param-
eter is locally enhanced by heavy impurities in light lattices.

I. INTRODUCTION

ECENTLY McMillan! has calculated the tran-

sition temperature for strong-coupling super-
conductors. He finds that for particular classes of
materials the electron-phonon coupling constant is
relatively independent of the electronic properties (in
contrast to the weak-coupled case) and is therefore
dependent on the phonon factors. He has supported
this conjecture with data from the 5d transition-series
elements. Further experimental study of this problem
will require development of techniques which are
capable of measuring the relevant lattice-stiffness
parameters with precision.

We emphasize here (a) that the Mdssbauer technique
provides a particularly direct method of determining
McMillan’s parameter, a characteristic phonon fre-
quency, for many situations, (b) that heavy impurities
in light-host lattices can increase McMillan’s parameter
locally, and (c) that theories of the behavior of im-
purity atoms developed for the Méssbauer effect are
useful in estimating the effect of the impurity on
McMillan’s parameter and also in interpreting the
Mobssbauer measurements of this parameter. Our
analysis is based on a theory of isotopic impurities by
Dawber and Elliott.? This theory assumes isotopic
impurities only, i.e., force constants are not permitted
to vary.

II. McMILLAN’S THEORY

McMillan derives expressions for the transition
temperature of strong-coupling superconductors based
upon the theory of Eliashberg.? A central conclusion
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of the paper is that for large classes of materials the
transition temperature may be represented in a rather
simple form:
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Here p* is the Coulomb pseudopotential and A is the
electron-phonon coupling constant; 2 and 7% have their
usual meanings. On the Debye model the pre-
exponential term is ®/1.45. An analysis of a number of
transition metals and alloys leads McMillan to con-
clude that the electron-phonon coupling constant
depends primarily upon phonon frequencies, rather
than upon electron properties of the metal. In the
following discussion we assume this point and in-
vestigate how the Mdéssbauer technique permits a
rather direct determination of the relevant averages
over the phonon spectrum.

The electron-phonon coupling constant is defined
by McMillan as

w0 dw
A=2 f e*(o)ge)—, @

where o?(w) is the average dynamic electron-phonon
interaction, g(w) is the phonon density of states, and
wq is the maximum phonon frequency. In the BCS
theory3* X\ is approximately NV (0)V where N (0) is the
density of electronic states at the Fermi surface and
V is the Cooper pairing potential due to o?(w). In the
strong-coupling theory McMillan finds

A= y(%@( f a?(w)g@)df / / @elg@ade), ()

where (I?) is the average over the Fermi surface of the
square of the electronic-matrix element of the change in
the crystal potential when one atom is displaced, and
M is the atomic mass.

4 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106,
162 (1957); 108, 1175 (1957).
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Assuming, as McMillan has, that o?(w) is frequency-
independent, we can write

N(O)(I2) .
N / (), 4)

.~ere we have introduced the expectation values
o= [ G+Dgeat, ®

where 7 is the Bose occupation number. The subscript
(0) in Eq. (4) indicates the ratio {w)/{w™1) is evaluated
near 7=0.

The connection with the Mossbauer effect arises from
the fact that the second-order Doppler shift of the
Mossbauer resonance is proportional to {w), while the
logarithm of the Mdissbauer recoil-free fraction f is
proportional to {(w™!). While both of these quantities
exhibit large temperature dependences, it has been
shown experimentally that the ratio {(w)/{w™) is
practically temperature-independent.® Thus, rather
precise values of ({(w)/{(w™))s can be easily obtained
from the method discussed in Ref. 5. Another useful
characteristic of the Mossbauer effect is that it permits
the lattice properties of isolated impurity atoms to be
studied. For reasons of experimental simplicity most
Mossbauer studies have involved either Fe%” or Sn'¥
as impurities in various host lattices. The observed
shifts and recoil-free fractions are properties of the
impurity within the particular host lattice rather than
properties of the pure host itself. We have previously®
summarized some observed values of the ratio ({(w)/
(w™))o obtained from Mdssbauer experiments in terms
of a temperature ¥, defined by

ko= ((w)/(@™))o. (6)

Within the Debye model ¢o=0/v2, while in the
Einstein® model ¢y=0gz. We can compare directly ¢,
with the McMillan parameter {(w2)/2(°K) as given in
his Table VII. As yet there do not exist sufficient
Mossbauer data to permit detailed conclusions. In
particular, there is no overlap with McMillan’s Table
VII with the exception of recent Mossbauer mea-
surements on Fe in Mo which yield a value of
Yo=271°K, in good agreement with McMillan’s value
of 310°K (KCT of Ref. 5).

In the empirical study of superconductivity it is
found that certain lattice structures (notably g-
tungsten) are especially favorable to high transition
temperatures. If the parameter ({w)/{w™))o should
also play a role, it becomes desirable to investigate
methods of independently changing it. One such method
may be the use of impurity systems.

5 R. D. Taylor and P. P. Craig, Phys. Rev. 175, 782 (1968);
T. A. Kitchens, P. P. Craig, and R. D. Taylor (unpublished).
6 W. M. Visscher, Phys. Rev. 129, 28 (1963).
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III. CALCULATIONS FOR ISOTOPIC IMPURITIES

A good deal of theoretical effort has been devoted to
the analysis of vibrational modes of impurity atoms.
Major contributors to this area include Visscher,$
Kagan,” Maradudin and Flinn,® Pathak and Deo,’
Elliott,2 Housley and Hess,”® and Dash et al.l! The
effects of changes in mass, changes in potentials, and
of anharmonic forces have been investigated by these
authors. To provide an indication of the type of effect
expected upon the ratio ({w)/{w™))o, we have used the
mass impurity calculation of Elliott.2 His theory is
exact for mass impurities of any magnitude. It assumes
the harmonic interatomic potential to be unchanged
by the presence of a mass discrepancy.

According to the calculation of Elliott,2 for an
impurity-to-host mass ratio R=M'/M,

W= {wlg<w><ﬁ+;>dw /
[(rammr [ £

+[%7r(1—~R)wg(w)]2“, )

with an additional term on the right-hand side due to
the local mode, if it exists. This term is

g (w')dwT ©

szH[ﬁ(Q)H][(l —Ry / (@)

where Q, the frequency of the local mode, is the eigen-
value of the equation

w’)dw'
1—(1—R)w2P/g( o, ©)

w?_wIZ

and where P indicates the principal value of the integral.
In general, the local mode exists only for R=M'/M
less than some critical value R.. For the Debye model,
R.=1.

We have evaluated these integrals on a computer
for a variety of phonon spectra. Our procedure was to
use numerical values of the assumed phonon spectra to
compute the integral in Eq. (9) for a wide range of
values for @ and to tabulate the result, as shown in
Fig. 1. With the aid of this table a search was made for
each value of the host-to-impurity mass ratio in order
to see if Eq. (9) had a solution. The final step was to
evaluate Eq. (7) (which utilizes the tabulated integrals)
and to add the contribution due to Eq. (8).

7 Yu. Kagan, Zh. Eksperim. i Teor. Fiz. 47, 366 (1964) [English
transl. : Soviet Phys.—JETP 20, 243 (1965)].
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9 K. N. Pathak and B. Deo, Physica 35, 167 (1967).
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1 7J. G. Dash, D. P. Johnson, and W. M. Visscher, Phys. Rev.
168, 1087 (1968).
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F16. 1. The phonon density g(w) for Fe from inelastic neutron
scattering experiments of Minkiewicz ef al. (Ref. 12) in unnor-
malized form and the principle-value integral P (w) of Eq. (9).

The results shown in Fig. 2 are expressed as ratios
2R {w)
wD2 (w—l)

evaluated at 7=0 and at T'— c. The factor R is
included because of a suggestion by Visscher that the
effective Debye frequency of the impurity is wp/+/R,
where wp is the Debye frequency of the host. This
suggestion is borne out well by our calculations. The
factor 2 normalizes the results to unity at R=1 on the
Debye model.
The phonon spectra studied include:

(a) the Debye spectrum, g(w)~w?,

(b) the experimentally observed Fe spectrum 2 as
determined from neutron diffraction, and

(c) a Debye spectrum rounded on the end by letting

g(w)~ (w—wp)? for w>0.75wp.

At high temperatures equipartition of energy
between kinetic and potential energy guarantees that
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F16. 2. Variation of the expectation value of the impurity
frequency divided by the expectation value of the inverse impurity
frequency (which is proportional to the electron-phonon factor)
normalized to unity for-a pure Debye lattice, as a function of the
ratio R of the impurity mass to the host-lattice mass. The cal-
culations are based on the theory of Dawber and Elliott (Ref. 2)
for isotopic impurities and are performed for several phonon
spectra. A remarkable feature of the calculations is the constancy
of the slope of the curves.

2V, J. Minkiewicz, G. Shirane, and R. Nathans, Phys. Rev.
162, 528 (1967).
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the ratio {w)/{w™*), is independent of R and tempera-
ture. The numbers next to the curves give this ratio
for the high-temperature limit for the various phonon
spectra. In the low-temperature limit the curves may
be rather well-represented straight lines on a semilog
graph. The slope of the curves is remarkably insensitive
to the particular form of the phonon spectra used.

We have computed curves similar to Fig. 2 for a
number of other phonon spectra, both realistic and
reasonable artificial ones. In all cases we find the slope
to be approximately equal to that in the curves shown.
In artificial spectra in which most of the density of
states is concentrated into very low-frequency modes,
it is possible to obtain values for the curves substantially
below those shown, but the slopes are negligibly
affected. In investigating the effect of various possible
phonon spectra, it should be noted that only spectra
rising at least linearly in w in the low-frequency limit
are permissible, for otherwise (w™") diverges.

The calculation allows only for isotopic impurities
and does not permit changes in force constant.®
Despite these restrictions, it is of interest to investigate
whether the results displayed in Fig. 2 can be corre-
lated with experimental results on superconductivity.
In Sec. IV an attempt is made to establish such a
correlation.

IV. ESTIMATE OF SHIFTS IN TRANSITION
TEMPERATURES IN ALLOYS

The central results of McMillan’s work are a simple
expression [ Eq. (1)] for the transition temperature of
strong-coupled superconductors and the conclusion
that lattice properties play a central role in determining
T.. In applying Eq. (1) to experimental values of T,
McMillan finds that the Coulomb pseudopotential is
approximately constant at about 0.134-0.03.

We assume for the present that near an impurity
the value of the electron-phonon coupling constant A
is altered, and that its variation is exclusively through
the effect of impurity modes. We then define a local
impurity value of A,

_ VO
M@/ i)

For isotopic impurities we have, using Egs. (4) and
(10),

(10)

A ((w)/{ws) ™o 2R
— =R——— = —((w)/{wi™))o-
A {(@)/ @™o wp? i/t

The equation on the right is obtained by assuming a
Debye model for the host lattice. With this assumption
the form on the right is that plotted in Fig. 2, and we
thus obtain a relation between A and As.

We can now define a local value T'; for the transition

(11)
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temperature in terms of Egs. (1), (4), and (10):

a o) f 100
To @ et (140.620)
14N —u*(14-0.62
X(l— (14N) [A—u*(14-0.62))] )] (12)
(14N Dhi—u(140.621:)]

We have placed a subscript on the Coulomb pseudo-
potential u;* as well as on A; for the impurity site. The
calculated curves are very sensitive to slight changes
in all these parameters.

From Fig. 2 one sees that the slope of the curves is
approximately constant. We may analytically repre-
sent Fig. 2 by

A 2R{w;)
— = —— =¢—0.133 log1oR, (13)
N ww™)
where ¢ is a constant equal to unity on the Debye model.
For other typical phonon spectra ¢ varies from unity
by about 0.2. The data from Table I of Ref. 5 permit
estimation of values of A\/\; for several values of R. It
is found that there is considerable spread in the points,
but that if the form of Eq. (13) is to be retained, a
value of ¢~0.6 is required for Fe impurity data. This
value is substantially below that obtained from compu-
tation using any except exceedingly unrealistic phonon
spectra. It must be concluded, therefore, that Fe im-
purities in the various host lattices studied are strongly
affected by force-constant changes, which are difficult
to estimate, as well as by mass changes, which we have
considered. Nonetheless, in applying Eq. (13) it would
appear that a choice of ¢=0.6 is more in accord with
experiment than is unity.

Itis not obvious how to relate local shifts in transition
temperature as given by Eq. (12) to bulk effects. The
proper expression would involve the impurity concen-
tration and might involve some weighting parameters
such as the range over which the impurity influences
the lattice modes or the electronic-pair correlation
length. A plausible approximation would appear to be
to assume the fractional shift in the bulk-observable-
transition temperature is proportional to the fractional
shift in local-transition temperature, multiplied by the
concentration

5Tc BTC Tc‘i
(), ()l ) o
Tc system Tc local Tc
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Here 3 is a proportionality constant. We have analyzed
the transition-temperature-shift data of Chanin,
I ynton, and Serin®® in terms of variation with R. We
find a general consistency in that the transition tem-
peratures are found to decrease with increasing R.
Typical shifts are of order

T/

ox

] T,
—0.6< — <o,

where the value zero is typical of R=1 and the value
—0.6 is typical of R=4. Computations using Egs.
(12)-(14) and typical values for the other parameters
taken from McMillan yield agreement only if the
parameter 8 in Eq. (14) is about 100. If we interpret 3
as the number of atomic volumes affected by the mass
impurity and assume it to be 100, then we find good
agreement with the Al and In alloy results of Chanin
et al.® by letting A=0.38, u*=0.130, and u;"=0.142.
This is equivalent to assuming an effective range of the
mass impurity of 7 A in these alloys. The agreement
may be fortuitous because we have not properly in-
cluded the effect of many factors normally considered
important in dirty superconductors.':1

V. CONCLUSION

The Mossbauer technique is found to offer a tool for
investigating a critical parameter in McMillan’s theory
of superconductivity for the special case of impurities.
Calculations of the expected behavior of isotopic im-
purities are made using the theory of Elliott? and are
compared to experiment. Observed transition tempera-
ture shifts can be explained in terms of isotopic mass
impurities without allowing for changes in force con-
stants, Coulomb pseudopotential, or other parameters
usually considered important in the problem. Whether
the agreement is of significance, or is merely fortuitous,
we cannot say.
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